Чёрная дыра пустила в струю

Статус: Offline
Реєстрація: 18.09.2007
Повідом.: 5793
Чёрная дыра пустила в струю

Вот:
24 АПРЕЛЯ, 18:12 //
Грандиозные космические струи, бьющие из окрестности чёрных дыр, удалось разглядеть в мельчайших деталях. Теперь астрономы уверены, что знают, как они образуются. Российские наблюдения оказались ключевыми для выяснения этого механизма.
СМОТРИ ТАКЖЕ
"Луч смерти" продырявил галактику

Астрономы разглядели уникальную пару галактик.


Международной команде астрономов, в которую входили и российские учёные, удалось в небывалых деталях пронаблюдать процесс выброса вещества из сверхмассивной чёрной дыры в центре далёкой галактики. Теперь они знают, как возникают огромные космические струи, вещество в которых подчас ускоряется до скорости лишь немногим меньше скорости света. Работа учёных опубликована в последнем выпуске Nature.

Представлять себе чёрную дыру как объект, который бесконечно засасывает в себя окружающее вещество, не выпуская ничего наружу, не совсем правильно. В конце концов, если бы они ничего не выпускали наружу, мы о них никогда бы и не узнали. Притяжение чёрных дыр настолько сильно, что в сферу их влияния часто попадает больше материи, чем они в реальности способны поглотить. Как показывают наблюдения, избыток выбрасывается из чёрных дыр в виде пары узких, направленных в противоположные от чёрной дыры стороны струй, которые русские астрономы на английский манер называют джетами.

Вообще, джеты – явление довольно универсальное, но чаще всего встречается именно при падении вещества на какой-то центральный объект. Это не обязательно должна быть чёрная дыра. В качестве притягивающего центра могут выступать и другие объекты – например, очень плотные нейтронные звёзды или даже протозвёзды – «эмбрионы» обычных звёзд, в них вещество, которому предстоит в дальнейшем стать частью звезды, долго собирается из межзвёздных облаков, оседая на поверхность образующегося светила.



Рашид Сюняев получил Крафоордскую премию
Накануне в Стокгольме прошла церемония награждения премией имени Крафоорда Шведской академии наук. В присутствии шведского короля Карла XVI Густава премии получили три человека - двое россиян, француз На самом деле, образование двух выбросов не столь уж удивительно. Как показали ещё в начале 70-х годов XX века советские астрофизики Николай Иванович Шакура и Рашид Алиевич Сюняев, почти каждый раз, когда происходит падение вещества на притягивающий центр – этот процесс называется аккрецией, – образуется так называемый аккреционный диск. Только взаимное трение слоёв такого газового диска друг о друга способно погасить скорость их вращения: без трения вещество на притягивающий центр упасть не cможет, а так и будет вращаться вокруг неё по своей орбите.

Поскольку внешние слои диска давят на внутренние, то излишки могут выбрасываться только над и под диском – вот вам, казалось бы, и два джета.



Удивительно другое – что струи оказываются настолько узкими, а вещество в них движется с огромными скоростями.
В конце 1970-х годов британский астрофизик Роджер Блендфорд и его аспирант Роман Знаек предложили первый хорошо проработанный механизм образования быстрых и узких струй. Согласно их модели, «костью в горле» чёрной дыры встаёт магнитное поле. В горячей плазме, в которую превращается при приближении к чёрной дыре газ, электромагнитные и механические свойства вещества перемешиваются, поскольку и те, и другие определяются движением заряженных частиц (в обычном веществе переносчики заряда составляют лишь ничтожную его часть). В результате магнитные силовые линии оказываются «вморожены» в вещество и, будучи вдали от чёрной дыры ориентированы случайным образом, с его закручиванием вокруг чёрной дыры заплетаются в своего рода жгуты, у которых появляется выделенное направление – по оси вращения.

Кроме того, вблизи вращающихся чёрных дыр работает и ещё один механизм – здесь кручение чёрной дыры увлекает за собой само пространство, а с ним – и вещество, и магнитное поле. Вдоль этого направления и устремляется вещество, выбрасываемое от поверхности чёрной дыры. Причины таких выбросов могут быть различны. Например, сильное, меняющееся магнитное поле может – как в турбине электростанции – рождать мощнейшие электрические разряды, которые рвут и перезамыкают магнитные линии и ускоряют заряженные частицы. Вращающееся, закрученное магнитное поле ещё больше разгоняет их. По дороге заряженные частицы взаимодействуют друг с другом, излучают свет, врезаются в нейтральное вещество. В результате образуются джеты.

Блендфорд и Знаек описали лишь самый общий механизм, однако за прошедшие 30 лет другие теоретики значительно улучшили и усложнили эту модель, объяснив многие остававшиеся за её рамками вопросы. Кроме того, появились и альтернативные модели образования джетов, однако надёжных наблюдательных данных, способных определить, какая модель работает на самом деле, до сих пор не было.



Группе учёных из США, России, Великобритании, Финляндии, Италии и Грузии удалось получить доказательства, что работает именно механизм Блендфорда–Знаека.
Точнее, той его модификации, что была предложена недавно греческим астрофизиком Нектариосом Влахакисом и его американским коллегой Ари Кёниглом.

Астрономы под руководством Алана Маршера из Бостонского университета создали целую «сеть» для наблюдения за сверхмассивными чёрными дырами, расположенными в центрах далёких галактик. Аккреция вещества на них провоцирует явление активного галактического ядра, самые яркие из которых называют квазарами. Чтобы выяснить мельчайшие подробности движения вещества в джете потребовалось почти каждую ночь следить за блеском, внешним видом и поляризацией излучения объектов с помощью целой батареи оптических и радиотелескопов; в космосе им помогали орбитальные телескопы, работающие в рентгеновском и гамма-диапазоне.

Из-за очень высоких скоростей вещества в джетах (около 98–99% скорости света) их излучение оказывается сконцентрировано в узком конусе диаметром несколько градусов. Учёные сосредоточились на особо ярком типе квазаров, в конус излучения которых попадает Земля. Их называют блазарами или лацертидами, по имени первого объекта такого рода, обнаруженного в прошлом веке, – «переменной звезды» BL Lacertae, или BL северного созвездия Ящерицы, оказавшейся на поверку ядром галактики, находящейся почти в миллиарде световых лет от нашей звёздной системы.

Собственно, с прототипом всех подобных объектов – самим BL Lac – учёным и повезло. На синтетических радиоизображениях, построенных синхронизированными радиотелескопами, находящимися в разных уголках земного шара, на месте этой «звезды» виден отходящий к югу от ядра галактики джет длиной около тысячной доли угловой секунды, на котором заметно более или менее стационарное яркое пятно. В ядре расположена чёрная дыра массой около 200 миллионов солнц. Собственно, самого галактического ядра как некоего яркого выделяющегося объекта не видно – в отличие от джета, оно излучает не только в нашу, но и во все остальные стороны. Второй джет, скорее всего, также присутствует, но увидеть его тоже не удаётся: конус излучения направлен в противоположном нам направлении.



«Сверхсветовые» движения в квазарах
Иллюзия сверхсветовых скоростей возникает, если выброс из ядра квазара движется с большой скоростью под углом, близким к направлению на наблюдателя, а последний может измерять лишь смещение в тангенциальном Один-два раза в год, совершенно нерегулярным образом, блеск BL Lac резко увеличивается – это чёрная дыра впрыскивает в струю очередную порцию вещества и энергии. Яркие выбросы проносятся вдоль джета, как кажется (смотрите справку), со сверхсветовыми скоростями и, постепенно слабея, растворяются в джете.

Подобное событие произошло в конце октября 2005 года. Блеск блазара в оптическом диапазоне вырос почти в три раза, а спустя чуть больше месяца – в декабре – произошла вторая вспышка. Измерения блеска вели сразу пять оптических обсерваторий в Европе, Азии и США. Тем временем радиоастрономы, используя сеть Национальной радиоастрономической обсерватории США, проследили распространение яркого пятна по джету. Измерения потока рентгеновских лучей и ещё более энергичных гамма-квантов тем временем позволили оценить энергии, до которых были ускорены частицы в распространявшемся вдоль джета облаке.

Наблюдения показали, что в обоих случаях блеск менялся из-за увеличения яркости движущегося вдоль джета выброса. Более того, появилось оно ещё до того, как произошла первая вспышка.



Именно две вспышки и предсказывает модель, основанная на ускорении вещества закрученным магнитным полем.
Вторая вспышка происходит при пересечении выбросом стационарной ударной волны, которую мы видим как неизменное яркое пятно. Она возникает при взаимодействии ускоренного в джете вещества с окружающим газом, сжимая и то, и другое. Сравнение оптических и радионаблюдений показало, что блеск вырос именно тогда, когда выброс пересекал пятно на джете, и был сжат ударной волной.



bz400.gif




Возникновение первой вспышки ещё интереснее. Выброс движется с огромной скоростью, близкой к скорости света, которая к тому же постоянно растёт. Из-за этого конус, в котором сосредоточено его излучение, постоянно сужается, а его яркость – растёт. Однако до поры до времени этот фонарик светит не прямо на нас, а в сторону, поскольку вещество движется вдоль стенки «сопла», которое образуют скрученные силовые линии. Однако рано или поздно магнитные силовые линии «растворяются» в хаотичном магнитном поле газа, окружающего сопло. В этот момент выброс оказывается свободным, и «фонарик» смотрит прямо на нас – мы видим вспышку.

Но это объяснение – в рамках данной модели, и использовать его для её обоснования сомнительно. Мало ли от чего произошла вспышка. Рисунок, приведённый выше (а есть и видеоролик (90МБ) и даже песня – осторожно, весьма двусмысленная), остаётся рисунком, астрономы пока не научились видеть далёкие объекты в таких деталях. Теория стала бы гораздо убедительней, если бы ориентацию направления излучения «фонарика» и магнитного поля можно было бы действительно измерить.



И вот здесь в работе очень пригодились данные, полученные российскими астрономами.
Они измерили направление плоскости поляризации оптического излучения – направление, в котором колеблется электрический вектор световой волны, приходящей от блазара.

Как рассказал «Газете.Ru» Владимир Александрович Гаген-Торн из Астрономического института Петербуржского университета, данные о поляризации, полученные им и его коллегами на телескопе АЗТ-8 Крымской астрофизической обсерватории, а также наблюдения на телескопе имени Койпера Стюардовской обсерватории в Аризоне позволили проследить, как изгибалась траектория движения выброса со временем.

Как оказалось, двигаясь от начала «магнитного сопла» к его концу, вещество совершило полтора оборота вдоль его стенки. Как и предсказывает теория, угол закрутки его траектории существенно меньше угла закрутки магнитных силовых линий – «шаг винта», по которому двигалось вещество, значительно шире, чем шаг закрученных линий магнитного поля. Эти данные позволяют рассчитать, как изменялось движение вещества со временем, и результаты подсчёта отлично сошлись с наблюдениями. Поляризационные данные также позволили примерно оценить размер выброса.

«Мы лишь дали фотометрию (измерение блеска – «Газета.Ru») и поляриметрию», – скромно заметил Гаген-Торн, являющийся соавтором работы.



Но именно эти данные позволили узнать, как именно двигалось вещество в джете, и удостовериться, что мы правильно понимаем механизм его ускорения.
Впрочем, учёные осторожны в своих выводах. Пока неизвестно, насколько применима эта модель к струям, бьющим из окрестностей других сверхмассивных чёрных дыр, и уж тем более – к джетам протозвёзд. По словам астронома, пока получить такие чёткие данные для других объектов не получается, хотя учёные продолжают свои измерения. Но это и не удивительно. Данная работа – пионерская. «Если бы подобных данных было много, не было бы статьи в Nature», – заключил Гаген-Торн.
 
Всем пэздець!
 
Все прячемся по бункерам!
 
это луч поноса!
 
бред черный
 
много букв((ну все равно орно)))))))
 
Это все происки Ктулху! :)
 
Вот блин, раньше все как то понятнее было. Энтропия да и все!
 
Галактеко опасносте!
 
Назад
Зверху Знизу