• Лови промокод з яким знижка 50 грн - promo50grn

Углеродные наноматериалы.. Кому-то интересно?

Статус: Online
Реєстрація: 28.11.2006
Повідом.: 15317
Углеродные наноматериалы.. Кому-то интересно?

Собственно - субж. Есть у нас технология получения., Получаем нанотрубки, вискеры, нановолокна.. Там же аналогичные вещи и микроразмерные...
Проблема в том, что получаем все достаточно "грязное". Много сажи и прочего.. Но тема, как я понимаю, достаточно инетерсная.
Так что, если кому-то инетересно - милости прошу в личку.. Ну или тут можем пообщаться...
Мой интерес - "научный интерес" ;-)
 
база в хфти?
 
А вы расчитываете механические свойства полученного волокна? Если да, то как и какие)
Буду рада ссылкам на ваши статьи)
 
Так ув. Jonhson вас интересут технологии разделения? Какой, интересно, суммарный выход с данной установки? По хим. составу так-же интересно(кроме самого углерода и водорода)? А так может быть -ИЗ ГРЯЗИ в КНЯЗИ! Пенициллин был открыт благодаря "грязно" проведенному опыту.
 
Какая длина нановолокон? Механические свойства тоже интересуют.
 
это ж хорошо, причем добрался совершенно бесплатно!
 
А вы расчитываете механические свойства полученного волокна? Если да, то как и какие)
Буду рада ссылкам на ваши статьи)

Неа, не рассчитываем ! ;-) Мы его только получать умеем...

Так ув. Jonhson вас интересут технологии разделения?
Скажем так.. Есть технология получения нано и макро волокон..
Вот что с ними дальше делать - пока не совсем понятно..
Вопрос очистки (отделения именно нанотрубок, например) - весьма актуален. Варианты с бензолом что-то не работают ;-(

Какой, интересно, суммарный выход с данной установки?
Достаточный.. Сколько надо - столько и получим ;-)

По хим. составу так-же интересно(кроме самого углерода и водорода)?
Присутствуют катализаторы.. В частности - железо.. В остальном - надо смотреть.. В принципе, материалы достаточно чистые...

Какая длина нановолокон? Механические свойства тоже интересуют.
Мы получаем как нано, так и макро-волокна. Вот только макро - это вискеры.. там механические свойства другие, очевидно.
Детально исследования по прочности - не проводились...
Я, собственно, и приглашаю всех к кооперации ! ;-)
 
я за!!! а толку?
 
А возможно получать товарный продукт, т.е. каждую неделю(месяц) оприделённое количество с заданными свойствами?
 

Ну, толк я вижу, как минимум, в новых интересных направлениях, публикациях.. В принципе, под это дело можно и гранты попросить и есть шанс, что дадут.. Как наши, отечественные, так и зарубежные...
 
Посилання видалено

Выращены углеродные нанотрубки рекордной длины – 18,5 см
29.09.09 | Нанотехнологии, Юрий Ерин | Комментировать
hematic_of_the_growth_method_of_ultralong_cnts_600.jpg

Рис. 1. (а) Схематическое изображение методики выращивания сверхдлинных углеродных нанотрубок химическим осаждением из газовой фазы. Катализаторы (наночастицы железа и молибдена; на рисунке обозначены как nanoparticles) находятся на пленке из длинных углеродных нанотрубок (super-aligned CNT film). Пленка расположена на подложке из чистого кремния (strip). Рост сверхдлинных нанотрубок (CNT) происходит в горизонтальном направлении. Полученные сверхдлинные нанотрубки собираются на подложках из оксида кремния (receiving substrates). Вся конструкция располагается на подложке из кварцевого стекла (supporting substrate). (b) Фотография массива сверхдлинных углеродных нанотрубок. Для демонстрации их длины чуть ниже показана линейка. (c) Изображения начала, середины и конца сверхдлинных углеродных нанотрубок, полученные с помощью сканирующего электронного микроскопа. Из обсуждаемой статьи в Nano Letters
Рис. 1. (а) Схематическое изображение методики выращивания сверхдлинных углеродных нанотрубок химическим осаждением из газовой фазы. Катализаторы (наночастицы железа и молибдена; на рисунке обозначены как nanoparticles) находятся на пленке из длинных углеродных нанотрубок (super-aligned CNT film). Пленка расположена на подложке из чистого кремния (strip). Рост сверхдлинных нанотрубок (CNT) происходит в горизонтальном направлении. Полученные сверхдлинные нанотрубки собираются на подложках из оксида кремния (receiving substrates). Вся конструкция располагается на подложке из кварцевого стекла (supporting substrate). (b) Фотография массива сверхдлинных углеродных нанотрубок. Для демонстрации их длины чуть ниже показана линейка. (c) Изображения начала, середины и конца сверхдлинных углеродных нанотрубок, полученные с помощью сканирующего электронного микроскопа. Из обсуждаемой статьи в Nano Letters

Группе китайских ученых, благодаря улучшенной ими технологии химического осаждения из газовой среды, удалось добиться контролируемого роста сверхдлинных углеродных нанотрубок (со скоростью 40 мкм/с). Полученные нанотрубки обладают рекордной на данный момент длиной — 18,5 сантиметров. Измерения показали, что электрические характеристики таких углеродных нанотрубок не меняются вдоль всей их длины. Этот факт очень важен для возможного применения нанотрубок в производстве различных электронных устройств.

Благодаря своим уникальным физическим свойствам, углеродные нанотрубки (пустотелые «цилиндры» со стенками из атомов углерода) в перспективе могут иметь множество применений в разнообразных технологиях. Например, волокна и тросы из углеродных нанотрубок, согласно теоретическим расчетам, имеют механическую прочность на два порядка больше, чем такие же стальные конструкции. И что немаловажно, обладая такой большой прочностью, они имеют плотность на порядок меньше, чем у той же стали. Что касается замечательных электрических свойств углеродных нанотрубок, то их можно использовать (и кое-где это уже пытаются делать) в электромеханических системах нового типа в качестве нанодиодов, транзисторов, микроэлектрических двигателей и соединительных наноэлектропроводов.

Однако промышленное применение нанотрубок пока что ограничено из-за ряда технологических проблем. Прежде всего, еще не научились дешево и в больших количествах выращивать углеродные нанотрубки. Во-вторых, сейчас не умеют получать сколь угодно длинные нанотрубки, которые при этом имели бы однородные (то есть одинаковые вдоль всей длины) физические свойства — например, без структурных дефектов. Наконец, в процессе роста нанотрубок сложно контролировать такую их характеристику, как хиральность (степень «закрученности» нанотрубки в цилиндр). А это очень важно, поскольку в зависимости от хиральности нанотрубка имеет либо металлическую, либо полупроводниковую проводимость, а значит, для создания различных электронных приборов надо знать тип электропроводности выращенных нанотрубок.

Эти проблемы ученые с переменным успехом пытаются решить модернизацией имеющихся методик и техник роста нанотрубок. И вот недавно группе китайских ученых удалось добиться наибольшего прогресса в получении углеродных нанотрубок с момента открытия их открытия в 1991 году. В своей статье Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates (полный текст — PDF, 220 Кб), опубликованной в журнале Nano Letters, исследователи сообщили о контролируемом синтезе одностенных углеродных нанотрубок с рекордной на данный момент длиной — 18,5 сантиметров; скорость роста при этом составляла более чем 40 мкм/с. До этого максимальной длиной обладала четырехсантиметровая одностенная углеродная нанотрубка, выращенная в 2004 году американскими учеными из Лос-Аламосской национальной лаборатории, а скорость роста составляла 11 мкм/с (см. Zheng et al., 2004. Ultralong single-wall carbon nanotubes // Nature Materials. V. 3. P. 673–676.)

Кроме того, и это тоже важный результат, электрические свойства 18,5-сантиметровых нанотрубок оказались неизменными вдоль всей их длины. Такие достижения стали возможны благодаря используемой учеными технологии CVD (chemical vapor deposition) — химического осаждения из газовой фазы. И хотя технология CVD широко известна в мире как один методов получения углеродных нанотрубок (и не только нанотрубок), китайские исследователи первыми придумали, как ее усовершенствовать и улучшить, чтобы добиться от нее максимальной эффективности. Рецепт получения сверхдлинных одностенных нанотрубок, однородных по своим электрическим свойствам, выглядит так.

Процесс роста происходил при температуре 950°C в атмосфере этанола и водяного пара. В качестве катализаторов роста использовались наночастицы железа и молибдена, которые пропускались через пленку «затравочных» длинных нанотрубок шириной 3 мм (рис. 1). Эта пленка, которую авторы статьи назвали несущей конструкцией для будущего получения сверхдлинных углеродных нанотрубок, находилась на подложке из чистого кремния. Чтобы усилить процесс роста, в течение часа через атмосферу этанола и водяного пара пропускался также водород, скорость потока которого составляла 250 см3 в секунду.

Роль воды заключалась в стимуляции и контроле каталитической активности, а также в предотвращении появления нежелательного для данного процесса «мусора» в виде аморфного углерода и вертикально ориентированных нанотрубок. Более того, авторы статьи обнаружили, что наиболее эффективно процесс выращивания происходит, когда этанол и вода смешаны между собой в пропорции 4 : 1 (под эффективностью имеется в виду чистота полученных нанотрубок и их длина). Подложка из чистого кремния также играла здесь важную роль. Во-первых, ее задачей было не допустить на начальном этапе роста сверхдлинных нанотрубок появления всё того же углеродного «мусора». Во-вторых, использование кремниевой подложки, по утверждению авторов статьи, помогало получить нанотрубки намного большей конечной длины. Ученые также обнаружили, что без участия несущей конструкции (пленки из длинных нанотрубок) углеродные цилиндры дорастали всего лишь до нескольких сантиметров.

Эти нововведения — несущая конструкция из длинных углеродных нанотрубок на подложке из чистого кремния, а также правильно подобранная пропорция этанола и воды — и позволили получить нанотрубки длиной около 18,5 сантиметров. Еще одним техническим достижением китайских ученых, на котором они акцентируют внимание в своей работе, было то, что им удалось добиться чрезвычайно равномерного распределения температуры в печке, где и происходил весь описанный выше процесс. Без этого выращенные нанотрубки имели бы неоднородные физические свойства.

Чтобы проверить, однородны ли электрические характеристики полученных сверхдлинных нанотрубок, китайские ученые взяли одну из нанотрубок и на ее основе изготовили свыше 100 полевых транзисторов
(рис. 2).
fet_array_units_600.jpg

Рис. 2. Множество полевых транзисторов на основе одной сверхдлинной углеродной нанотрубки: (a) — схематический рисунок и (b) — изображение, полученное сканирующим электронным микроскопом. Из обсуждаемой статьи в Nano Letters
Рис. 2. Множество полевых транзисторов на основе одной сверхдлинной углеродной нанотрубки: (a) — схематический рисунок и (b) — изображение, полученное сканирующим электронным микроскопом. Из обсуждаемой статьи в Nano Letters

Параметры транзисторов оказались полностью тождественными друг другу. Из этого исследователи сделали вывод, что электрические свойства таких углеродных нанотрубок не изменяются по их длине.

К сожалению, в работе китайских ученых не сообщается о том, насколько выращенные ими сверхдлинные нанотрубки структурно однородны и можно ли их использовать для создания очень прочных нитей и тросов? Вопрос чрезвычайно актуален хотя бы для проекта космического лифта — гигантского подъемника грузов на околоземную орбиту, где в качестве троса учеными рассматриваются бездефектные и очень длинные углеродные нанотрубки.
 
А возможно получать товарный продукт, т.е. каждую неделю(месяц) оприделённое количество с заданными свойствами?
Вроде как да...

Кому интересно - с конкретными предложениями прошу в личку... В принципе, можно и тут, конечно...
 
Назад
Зверху Знизу