Отчёт

Теплотехнический расчёт ограждающей конструкции выполнен

по СНиП 23-02-2003 «Тепловая защита зданий», СП 23-101-2004 «Проектирование тепловой защиты зданий»,

СНиП 23-01-99* «Строительная климатология», в программе TePeMOK 0.8.5 / 0118 © 2005—2015 Дмитрий Чигинский.

Определить требуемую толщину слоя в конструкции **Наружной стены** в **Жилом здании, школе, гостинице или общежитии**, расположенном в городе **Харьков** (зона влажности — **Сухая**).

Расчетная температурой наружного воздуха в холодный период года, t_ext = -23 °C; Расчетная средняя температура внутреннего воздуха здания, t_int = 20 °C; Средняя температура наружного воздуха отопительного периода, t_ht = -1.5 °C;

Продолжительность отопительного периода, $z_ht = 179$ сут.;

Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А.

Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n=1; Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, α_- ext = $\mathbf{23}$ Bt/(\mathbf{m}^2 -°C); Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, α_- int = $\mathbf{8.7}$ Bt/(\mathbf{M}^2 -°C);

Нормируемый температурный перепад, $\Delta t_n = 4$ °C;

Нормируемое значение сопротивления теплопередаче, R_req = **2.747** м²⋅°С/Вт;

Nº	Наименование, плотность	λ, Bτ/(м⋅°C)	t, mm
1	Экструдированный пенополистирол Стиродур 2500С, 25 кг/м ³	0.031	0
2	Силикатного на цементно-песчаном растворе (ГОСТ 379), 1800 кг/м ³	0.76	250
3	Раствор цементно-песчаный, 1800 кг/м ³	0.76	20

Толщина искомого слоя, t = 69 мм;

Суммарная толщина конструкции, $\Sigma t = 339$ мм;

Расчёт выполнен 18 августа 2015 года.

Отчёт

Теплотехнический расчёт ограждающей конструкции выполнен

по СНиП 23-02-2003 «Тепловая защита зданий», СП 23-101-2004 «Проектирование тепловой защиты зданий»,

СНиП 23-01-99* «Строительная климатология», в программе TePeMOK 0.8.5 / 0118 © 2005—2015 Дмитрий Чигинский.

Определить требуемую толщину слоя в конструкции **Наружной стены** в **Жилом здании, школе, гостинице или общежитии**, расположенном в городе **Харьков** (зона влажности — **Сухая**).

Расчетная температурой наружного воздуха в холодный период года, t_ext = -23 °C; Расчетная средняя температура внутреннего воздуха здания, t_int = 20 °C; Средняя температура наружного воздуха отопительного периода, t_ht = -1.5 °C;

Продолжительность отопительного периода, $z_ht = 179$ сут.;

Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А.

Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n=1; Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, α_- ext = $\mathbf{23}$ Bt/(\mathbf{m}^2 -°C); Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, α_- int = $\mathbf{8.7}$ Bt/(\mathbf{m}^2 -°C);

Нормируемый температурный перепад, $\Delta t_n = 4$ °C;

Нормируемое значение сопротивления теплопередаче, R_req = **2.747** м²⋅°С/Вт;

Nº	Наименование, плотность	λ, Bτ/(м⋅°C)	t, MN
1	Пенополистирол, 100 кг/м ³	0.041	0
2	Силикатного на цементно-песчаном растворе (ГОСТ 379), 1800 кг/м ³	0.76	250
3	Раствор цементно-песчаный, 1800 кг/м³	0.76	20

Толщина искомого слоя, t = 92 мм;

Суммарная толщина конструкции, $\Sigma t = 362$ мм;

Расчёт выполнен 18 августа 2015 года.